
Materiales tradicionales de construcción

Materiales cerámicos

Cerámica:

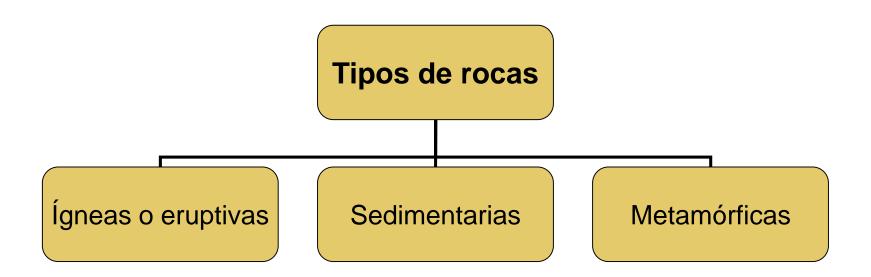
- Lenguaje cotidiano: objetos de uso doméstico fabricados con diversos tipos de arcilla.

-**Términos tecnológicos:** grupo de materiales de construcción, que engloba:

Piedra para la construcción

Arcillas y sus derivados

Gran resistencia a la compresión, pero débiles frente a la tracción



Piedra para la construcción

Piedra: cualquier material derivado de las rocas

- Rocas: agregados de partículas minerales de dimensiones apreciables y formas indeterminadas.

Ha sido utilizada desde la Antigüedad

Ígneas o eruptivas

-Composición: en su mayoría, silicatos y otros compuestos de: Al, Fe, Ca, Mg, Na, K.

-Formación: por el enfriamiento del magma del interior de la tierra. Tipos:

- +Ígneas de **estructura cristalina**: enfriamiento lento (granito, gabro y diorita).
- + Ígneas de **estructura vítrea:** enfriamiento de forma brusca (basalto, liparita y la piedra pómez).

Minerales y rocas industriales de origen ígneo

- Nefalina
- Feldespato
- Micas
- Minerales de litio
- Berilo

- Granito
- Basalto
- Diabasa
- Pumita
- Perlita

Rocas igneas

Son rocas producto de erupciones volcánicas que al enfriarse se endurecen.

Se obtienen de canteras al aire libre, excavando minas de poca profundidad, y están diseminadas prácticamente en toda la República Mexicana. y se clasifican en:

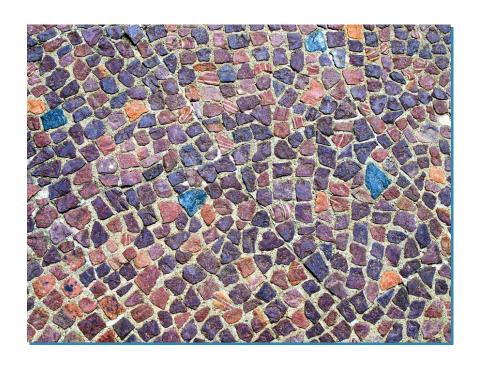
Rocas igneas plutónicas

- Se nombran plutónicas debido a que se extraen a una gran profundidad de la superficie de la tierra.
- Presentan las características que se enlistan:
 - Su estructura es cristalina
 - Son muy compactas
 - Tienen una dureza elevada
 - Presentan gran resistencia a la carga
 - De extraordinaria belleza
 - Son muy pesadas

Rocas igneas plutónicas es el

Granito

Se aplica en forma de loseta como recubrimiento de muros, pisos y barras de cocina.


Rocas ígneas filoneanas

En profundidades medias se llaman rocas intermedias o filoneanas.

- Rocas con granos de tamaño medio
- Resistentes a la compresión
- Compactas

Un ejemplo de rocas ígneas filoneanas es el

Pórfido

Los pórfidos se aplican en forma de piedras irregulares para cimientos, en Adoquines, en pisos, o en forma de loseta como recubrimiento de muros y pisos.

Andesita

La andesita generalmente se tritura para que se utilice como grava para elaborar concreto.

Rocas igneas volcánicas

Las que se encuentran más cerca de la superficie terrestre se llaman rocas volcánicas.

- Son menos compactas que las plutónicas
- Constituyen grandes mantos
- Contienen pequeñas burbujas de aire que forman una estructura cavernosa
- Presentan baja resistencia a la carga
- Son ligeras

Un ejemplo de rocas ígneas volcánicas es el

Basalto

En forma de piedras irregulares, se usan para cimientos, mientras que en forma de sillares, se utilizan para construir muros o como adoquines para pisos.

Tezontle

- El tezontle se emplea con mucha frecuencia en la construcción como relleno para pisos, debido a que es ligero.
- En algunas regiones del país se labra como losetas y se aplica como recubrimiento para muros exteriores.

Piedra pómez

- Si se tritura, se utiliza para elaborar concretos ligeros, también como relleno para mejorar el aislamiento térmico y acústico de algún área.
- Se emplean para lograr el efecto de apomazado en otros pétreos naturales.

Rocas sedimentarias

- -Composición: sedimentos (cantos rodados, gravas, arenas, arcillas, limos, e incluso materia orgánica).
- -Formación: asentamiento en la superficie terrestre desde hace centenares de millones de años.

-Tipos:

- +Silíceas: arenas o gravas consolidadas con otros materiales duros o blandos (arenisca).
- +Calizas: resistentes a la compresión y muy utilizadas en construcción (calcita (CaCO3) y yeso)
- +Arcillosas: depósitos sedimentarios procedentes de la meteorización de rocas ígneas (caolín).

Minerales y rocas industriales de origen sedimentario

MINERALES

- Diamante
- Diatomita
- Potasas
- Sulfatos
- Boratos
- Nitratos
- Azufre

ROCAS

- Arena y grava
- Arenisca
- Arcilla
- Caliza y dolomita
- Fosfatos
- Sales
- Yeso

Rocas sedimentarias

- Las rocas sedimentarias se forman por desgaste o por sedimentación de restos de rocas metamórficas o rocas ígneas.
- Para que una roca se denomine sedimentaria es indispensable que haya sufrido erosión, transportación a través del tiempo y del suelo y por ultimo sedimentación.
- De acuerdo con sus características físicas, se clasifican en tres grandes grupos, según su formación.

Sedimentación mecánica

- Producto de la erosión por agentes ambientales como el agua y el viento
- Su textura es lisa
- Presenta formas redondeadas
- Colores muy variados, según el tipo de rocas de origen
- Gran dureza
- Las principales rocas de este tipo que se usan en la construcción son la arena y las gravas, que se obtienen de los lechos de los ríos (las gravas también son llamadas cantos rodados).

Arenas

Se utiliza para elaborar concreto, mortero, pastas, camas para colocar adoquines y rellenos.

Gravas

Se utiliza para elaborar concreto, como recubrimiento de pisos y como adorno de jardinería.

Sedimentación química

- Producto de la sedimentación de las sales y minerales que se encuentran disueltas en las aguas de los mares, ríos, lagos, etc., que por efectos de la evaporación, reacción química o por la influencia de ciertos organismos, se depositan en el fondo formando yacimientos de gran espesor.
- Dureza media.
- Colores variados dependiendo del mineral del cual están formados, principalmente blanco y gris.
- Textura uniforme.
- Se pueden apreciar capas de material superpuestas

El yeso y las calizas son las rocas que más se emplean en la construcción

Se utiliza molido en polvo fino para elaborar pasta de yeso, que sirve de recubrimiento en muros y plafones.

YESO

Se utilizan para construir cimientos en su forma irregular. Si la roca se labra en forma de sillares sirve para construir muros , y triturada se usa como grava para elaborar concreto.

CALIZAC

CALIZAS

Sedimentación orgánica

- Producto de la acumulación de restos de organismos vivos que contienen calcio.
- Su proceso es muy parecido a la sedimentación química, puesto que también ocurre en el fondo de lagos, mares o ríos.
- La diferencia es que dentro de las rocas se pueden ver los restos de organismos vivos.
- Colores blanco y gris claro debido al calcio y negro por la sedimentación de materia vegetal
- Textura irregular.

Sedimentación orgánica

- Las rocas sedimentarias orgánicas se obtienen de zonas extensas donde anteriormente existían bancos de agua que ya se ha evaporado, y en minas poco profundas.
- Las rocas sedimentarias son muy abundantes en la naturaleza y diseminadas prácticamente en toda la republica mexicana.

Dentro de las rocas sedimentarias orgánicas se pueden ver los restos orgánicos como se muestran a continuación.

Caliza orgánica

Se utiliza en la construcción en forma de loseta para recubrir muros y objetos decorativos.

Rocas metamórficas

-Formación: transformación de la estructura cristalina de otras rocas, debido a grandes presiones y temperaturas.

-Tipos:

+Pizarra: (arcilla y esquistos) es maleable y empleada en la fabricación de techumbres.

+Mármol: (carbonato de calcio) admite el pulimento y se emplea como piedra ornamental.

Minerales y rocas industriales de origen metamórfico

MINERALES

- Grafito
- Asbesto
- Talco
- Vermiculita

ROCAS

- Pizarra
- Mármol

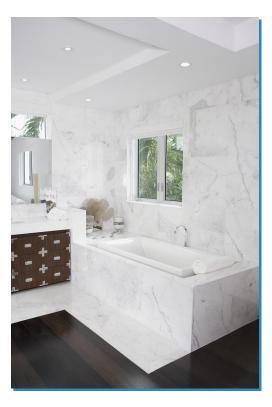
Minerales y rocas de origen filoniano y metasomático

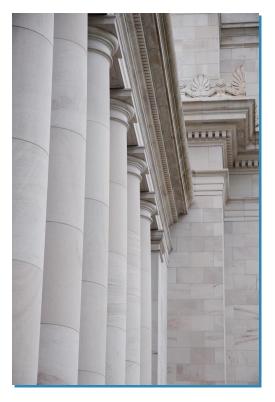
MINERALES

- Cuarzo
- Fluorita
- Baritina
- Magnesita

ROCAS

- Pegmatita
- Aplita
- Dolomita


Rocas metamórficas


Son rocas de origen volcánico o sedimentario, pero a consecuencia de grandes presiones o de temperaturas elevadas dentro de la corteza terrestre, han transformado su estructura interna y sus propiedades presentando las siguientes características:

Rocas metamórficas

- Presentan gran resistencia a la carga
- Su textura es áspera, pero cuando se procesan para construcción se pulen y quedan sumamente lisas.
- De gran belleza estética
- Pesadas
- Muy compactas
- Sus colores son muy variados, pues esto depende del mineral que predomine en su formación
- Contiene vetas de otros minerales que hacen que cada piedra sea única
- Las rocas metamórficas se obtienen excavando minas de poca profundidad.

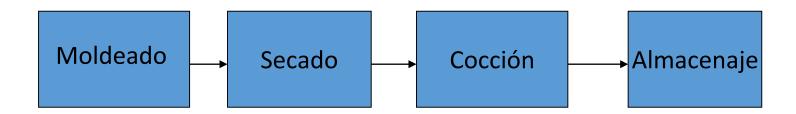
Un ejemplo de rocas metamórficas es el Mármol

El mármol es muy apreciado en la construcción para recubrir muros y pisos, anteriormente se empelaba en forma de sillares para construir muros.

Pizarra

Se utiliza para recubrir muros o como piedra para pavimentar caminos.

Ónix



Se usa para recubrir muros, barras de cocina y elementos decorativos.

Arcillas y derivados

- -La arcilla es una variedad de roca sedimentaria.
- -Composición: silicatos de aluminio hidratados que forman laminillas cristalinas microscópicas.
- -Características: son químicamente inertes; embebidas en agua, son plásticas; al eliminar el agua se vuelven duras y frágiles; resisten altas temperaturas y presentan una porosidad muy baja.
- -Proceso de obtención:

- -Existen cuatro grandes grupos:
 - +Ladrillos y tejas
 - +Azulejos y pavimentos cerámicos

- +Porcelana y loza
- +Materiales refractarios

Ladrillos y tejas

-Arcilla pesada.

-Se obtiene la arcilla y se calienta entre 900 y 1200ºC: aumenta su **resistencia mecánica** y su **aislamiento térmico**.

Porcelana y loza

- -Mezcla de caolín, arcillas blancas, sílice y feldespato (se consigue un material de partida muy blanco).
- -Se **cuecen**, teniendo en cuenta su posible **contracción**.

-Diferencia:

- **+Porcelana:** queda vitrificada toda la masa del objeto y es **industrial**.
- **+Loza:** solo queda vitrificada la capa externa y su uso es **doméstico**.

Azulejos y pavimentos cerámicos

-Mezcla de arcillas especiales.

-Obtención:

+Galleta: mezcla de arcillas a grandes presiones.

+Pintura: se vierte barniz coloreado.

Se cuece

Materiales refractarios

- -Arcilla refractaria: estabilidad a altas temperaturas.
- -Se moldean y se pueden obtener diversas piezas, como **ladrillos**.
- -**Enfermedades**: silicosis: inhalación del polvo de sílice.

Cementos:

- Producto con propiedades adhesivas y capaz de unir piezas de una construcción (sílice, alúmina, magnesio y resinas sintéticas).
- En la construcción se utilizan aglomerantes hidráulicos, plásticos con agua y duros al fraguar.
- Antiguamente: cemento natural: economía y sencillez de instalaciones.
- Actualmente: cemento Portland
- Proceso de obtención del cemento Portland
- Concreto.

Proceso de obtención del cemento Portland

- -Operaciones previas:
 - +Secado previo.
 - +Molienda.
 - +Dosificación.

- -Molienda y acabado: se tritura, se homogeiniza y se almacena para su distribución
- -Consumo de energía:
 - +Eléctrica: accionamiento de los motores y otras máquinas.
 - +Térmica: fase de fabricación del clínquer.

- -Fabricación del clínquer:
 - +Secado.
 - +Deshidratación de la arcilla.
 - +Descarbonatación.
 - +Clinquerización.
 - +Enfriamiento.

Concreto

4 4

-Mezcla, en diferentes proporciones, de cemento, arena y grava, a la que se añade agua.

- -Características según el porcentaje de sus componentes:
 - +Cemento: impermeabilidad y resistencia mecánica.
 - +Arenas y gravas: resistencia a la tracción del Concreto.
 - +Agua: no tiene por qué ser potable.

- -Tipos de Concreto:
 - +Concreto armado.
 - +Concreto pretensado.

Concreto armado

-Formado por:

- +Concreto fresco: resistencia a los esfuerzos de compresión (zona superior)
- +Armadura de varillas o barras de acero: resistencia a los esfuerzos de tracción (zona inferior)
- -Proceso de obtención:
 - +Encofrado o molde.
 - +Introducción de la armadura de acero.
 - +Vertido del Concreto fresco.
 - +Tras fraguar, retirada del encofrado.
- -Su recubrimiento garantiza impermeabilidad de la estructura y, por tanto, inoxidabilidad de la armadura de acero.

Concreto pretensado

-Variedad de Concreto armado cuyas barras han sido tensadas para soportar esfuerzos de tracción mayores.

-Procesos de tensado de las barras:

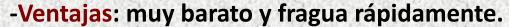
+Pretesado: antes de que fragüe el Concreto.

+Postesado: Dentro de unas vainas cuando el

Concreto ya ha iniciado el fraguado.

-Ventaja: menor cociente económico-resistente.

Yeso


-Aglomerante obtenido de la piedra de algez (sulfato de calcio dihidratado).

-Proceso de obtención:

- +Trituración del mineral.
- +Procedimiento de cocción.
- +Deshidratación.
- +Segunda trituración.

-Tipos de cocción:

- +Tradicional.
- +Horno de cuba.
- +Horno rotatorio.

- -Inconvenientes: higroscópico (gran avidez ante el agua).
- -Su resistencia mecánica a tracción y a compresión depende de su naturaleza, composición y cantidad de agua.

Vidrio

-Material que se obtiene mediante la fusión de diferentes componentes:

arena, caliza, sosa y otros aditivos.

-Características:

- +Duro +Transparente
- +Estructura amorfa(no cristalino) +Resistente a tracción.

-Tipos de vidrios:

- +Vidrio hueco.
- +Vidrio colado.
- +Fibra de vidrio.

+Vidrio plano.

+Vidrio prensado.

-Productos derivados del vidrio.

Vidrio hueco

-73% de sílice, 16% de sosa, 9% de cal y 2% de otros componentes.

-Fabricación por soplado:

+Artesanal:

- >Introducir caña de soplar y soplar en el vidrio fundido.
- >Dar forma a la burbuja formada.
- >Retirar la caña y recortar lo sobrante.

+Automática:

- >Cortar la cantidad de vidrio fundido necesario.
- >Depositarla en la boca de un molde metálico.
- >Insuflación de aire mediante máquinas sopladoras.
- >Más rapidez.+

Vidrio plano

- -72% de sílice, 14% de sosa, 9% de cal y 5% de aditivos.
- -Obtención por flotación: (float glass)
 - +Dosificación, mezcla y fusión.
 - +Extracción del horno por medio de la garganta, que proporciona el espesor requerido.
 - +Desplazamiento sobre un baño de estaño fundido.
 - +La laminada es arrastrada por rodillos.
 - +Recocido en un túnel de temperatura decreciente: enfriamiento sin tensiones internas.
- -Obtención por estirado: en horizontal o vertical
 - +Aproximación de lámina metálica (cebo).
 - +Levantar y hacer pasar por rodillos que la conforman.

Vidrio colado

-Láminas de diferente grosor y diversas texturas.

-Obtención por colada:

- +Se almacena el vidrio fundido en una cubeta.
- +Es vertido al exterior por su boca a una mesa de colada con rodillo refrigerado conformador.

-Obtención por laminado:

- +Se almacena el vidrio fundido en la cubeta.
- +Es vertido al exterior por su boca a unos

rodillos laminadores refrigerados.

Vidrio prensado

-Uso: obtención de artículos de gruesas paredes.

-Obtención:

- +Se vierte (fundido) en el interior de un molde metálico.
- +Compresión mediante una estampa contra el contramolde.

Flora de viorio

-Obtención:

- +Extrusión de la masa de vidrio a través de unas boquillas con diámetro inferior a 0,1 mm.
- +Los hilos obtenidos se deshilachan con vapor y se secan.
- +Estiramiento mediante rodillos.
- +Sometimiento a una ligera torsión y enrollamiento en bobinas.

Productos derivados del vidrio:

-Vidrio de ventana:

+A partir del vidrio plano. +Dureza

+Coloreado o incoloro. +Transparente a luz visible

+Resistencia notable a compresión y no a tracción.

+Aislante acústico.

-Vidrio armado:

- +A partir del vidrio colado, más una malla metálica.
- +Elemento protector en caso de fuego.

-Vidrio de seguridad:

- +A partir del vidrio plano, más:
 - >Una luna: elástico, resistente a los golpes, coeficiente bajo de dilatación (acristalados de puertas, escaleras, balcones...)
 - >Varias lunas: (elemento de seguridad en joyerías, lunas de los automóviles.

-Vidrio antirreflectante:

- +A partir del vidrio plano, provisto de una capa dura y resistente.
- +No pierde transparencia
- +Usos: lunas de escaparates, vitrinas y cuadros